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Abstract 
 

Spatially homogeneous anisotropic Bianchi Type I inflationary scenario for barotropic 
fluid distribution with variable bulk viscosity is investigated. To get the deterministic and 
realistic model, we have assumed   3H2,   1/2 as considered by Barrow (1988) and 
Gron (1990) where  is the matter density,  the bulk viscosity, H the Hubble parameter 

and conservation equation 
j
jiT ; = 0 is taken into account. We find that bulk viscosity 

prevents the matter density to vanish. The model in general represents anisotropic 
universe but at late time, it isotropizes. The spatial volume increases with time 
representing inflationary scenario. The energy conditions as given by Kolassis et al. 
(1998), Chatterjee and Banerjee (2004) are discussed. The energy condition  + p > 0 is 
violated due to the presence of scalar field () in inflationary universe. 
 

PACS Nos.: 04.20.-q, 04.20.Jb, 04.20. Cv. 
 
1. Introduction 
 
 The anisotropic models provide a systematic way to obtain cosmological 

models more general than Friedmann-Robertson-Walker (FRW) model. But FRW 

model are unstable near the singularity (Patridge and Wilkinson (1967)) and fail to 

describe early universe. Therefore, spatially homogeneous and anisotropic Bianchi 

Type I metric is undertaken to study the universe in its early stages of evolution of 

universe. The existence of anisotropic universe that approaches the isotropic phase is 

pointed out by Land and Magueijo (2005).  
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The matter distribution is satisfactorily described by perfect fluid due to large 

scale distribution of galaxies in our universe. However, a realistic treatment of the 

problem requires the consideration of material distribution other than perfect fluid. 

This is supported by the fact that when neutrino decoupling occurred, the matter 

behaved likes viscous fluid in early stages of evolution of universe. Misner (1967, 

1968) studied the effect of viscosity on the evolution of universe and suggested that 

strong dissipation due to the neutrino viscosity may considerably reduce the 

anisotropy. Anisotropic Bianchi Type I viscous cosmological models have been 

investigated by Belinski and Khalatnikov (1976). They pointed out that Bianchi Type I 

universe with viscous fluid will approach asymptotically isotropic steady state model. 

Heller (1978) analyzed viscous isotropic and anisotropic homogeneous cosmological 

models in relation to the weak, dominant and strong energy conditions.  

 

Bali (1984, 1985) investigated solutions with viscous magneto hydrodynamic 

matter sources using the ansatz  = constant.  Barrow (1988) has considered a 

radiation dominated model with constant coefficient of bulk viscosity and positive 

spatial curvature. Gron (1990) investigated viscous inflationary models and pointed 

out that bulk and shear viscosities cause exponential decay of anisotropy while non-

linear viscosity causes power-law decay of anisotropy. Zimdahl (1996) investigated 

that sufficiently large viscous pressure leads to inflationary behaviour. The effect of 

viscosity upon the expansion of the universe in an inflationary era has been 

investigated by many authors viz. Waga et al. (1986), Padmanabhan and Chitre (1987), 

Barrow (1987), Lima et al. (1988), Chimento et al. (1997), Maartens and Mendez 

(1997), Brevik et al. (2011).  

 

The effect of bulk viscosity on cosmological models is also investigated by 

Saha (2005), Singh et al. (2000), Bali and Singh (2008), Bali et al. (2012), Ram et al. 

(2012), Brevik and Gron (2013). 
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Inflation is the extremely rapid expansion of the early universe by a factor of 

1078 in volume driven by negative pressure vacuum energy density. Guth (1981) 

introduced the concept of inflation while investigating the problem of why we do not 

see magnetic monopoles today. He found that a positive energy false vacuum 

generates an exponential expansion of space according to general relativity. As 

pointed out by Guth (1981), inflationary models provide a potential solution to the 

problem of structure formation in Big-Bang cosmology like horizon problem, 

isotropy problem, flatness problem and magnetic monopole problems. Inflationary 

scenario for homogeneous and isotropic space-time (FRW model) has been studied 

by many authors viz. Linde (1982), Burd and Barrow (1998), La and Steinhardt (1989). 

Rothman and Ellis (1986) have pointed out that we can have solution of isotropic 

problem if we work with anisotropic metric that isotropizes in special case. Keeping 

in view of these investigations, Bali and Jain (2002), Bali (2011) investigated some 

inflationary cosmological models for flat potential in Bianchi Type I space-time. 

Recently Bali and Singh (2014) investigated LRS (Locally Rotationally Symmetric) 

Bianchi Type I inflationary model for stiff fluid distribution with variable bulk 

viscosity. 

 

In the present investigation, we have investigated spatially homogeneous 

anisotropic Bianchi Type I inflationary model for barotropic fluid distribution with 

variable bulk viscosity. To get the realistic scenario, we have assumed the barotropic 

condition p = (1), 1    2, 
2123H 

as considered by Barrow (1988) 

and Gron (1990) and conservation equation 
j
jiT ; = 0 is taken into account.  

We find that spatial volume increases with time representing inflationary scenario.  
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The deceleration parameter (q)< 0 which shows that the model represents 

accelerating universe which matches with the result as obtained by Riess et al.(1998) 

and Perlmutter etal. (1999).  

 

2. Metric and Field Equations 

 

We consider spatially homogeneous Bianchi Type I metric in the form 

22222222 dzCdyBdxAdtds 
(1) 

where A, B, C are metric potentials and functions of t alone. Einstein field equation is 

taken in the form 

ijijij Tg R
2
1R 

(2) 

(in geometrized unit 8G = 1 = c) 

with 

ijjijiijijjiij gV(
2
1vvgg pvp)vT 



  


(3) 

and 




 d
dVg

g
1 i

i
(4) 

Where  is the matter density, p the isotropic pressure,  the coefficient of 

bulk viscosity,  the expansion in the model, gij the metric tensor, vi the flow vector 

satisfying gijvivj = -1,  the Higgs field and V the potential. 

 

The Higgs field is an invisible energy field, that exists everywhere in the 

universe.  
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The field is accompanied by fundamental particle called Higgs-Boson, which it 

uses to continuously interact with other particles. As the particles pass through the 

field, they are endowed with the property of mass. 

 

Einstein field equation (2) together with (3) and (4) for the metric (1) leads to 

 




 V(
2

p
BC

CB
C

C
B

B 2
444444



(5) 




 V(
2

p
AC

CA
C

C
A

A 2
444444



(6) 




 V(
2

p
AB

BA
B

B
A

A 2
444444



(7) 




 V(
2BC

CB
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CA
AB

BA 2
444444



(8) 

Equation (4) leads to 














d
dV

C
C

B
B

A
A 444

(9) 
 

 

3. Solution of Field Equations 

Equations (5), (6) and (7) lead to 

0
B

B
A

A
C

C
B

B
A

A 4444444 









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(10) 

and 

0
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A
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B

B 4444444 






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


        (11) 
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Equation (10) leads to 

















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A 44444

4

44

= 0    (12) 

Thus we have 

3H

B
B

A
A

B
B

A
A

44

4

44





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
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       (13) 

Similarly equation (11) leads to 

3H

C
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B
B

C
C

B
B

44

4
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





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

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        (14) 

where 

3H
C

C
B

B
A

A 444 
        (15) 

H being Hubble parameter.  

Now conservation equation 

0T 
  

leads to 

0Tg
 t2

1Tg log
 t

T
 t

4
4

4
4 










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    (16) 

Thus we have 
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0
C

C
B

B
A

A 444 











       (17) 

Stein-Schabes (1987) has pointed out that inflation will take place if potential V() has 

flat region. To find inflationary scenario, we consider flat region so that V() is 

constant. Therefore equation (9) leads to 

0
C

C
B

B
A

A 4442 









 

      (18) 

To get the deterministic solution, we assume that universe is filled with barotropic 

fluid distribution 
212  a3H and 1(p 

as considered by Barrow 

(1988) and Gron (1990). Using the above conditions, now equations (17) with (18) 

and  

 

3
1  a assuming

3
1 21

      (19) 

lead to 

0
3

19HH H 6 3 
       (20) 

which leads to 




t
2 H

(21) 

where 

 133
(22) 

Equation (14), (15) and (22) lead to 

 6
1

44 t
B

B
A

A

       (23) 
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 6
2

44 t
C

C
B

B

       (24) 

where 21 
are constants. 

From equations(23), (24) and (15), we have 
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    (27) 

where 543 
 are constants and 1 <  < 6. 

The metric (1) leads to the form 

2
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2142
3
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After suitable transformation of coordinates, the metric (28) leads to  
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4. Physical and Geometrical Features 

 

The matter density (), the isotropic pressure (p), the bulk viscosity (), the expansion 

(), the shear (), the spatial volume (R3), the deceleration parameter (q) for the model 

(29) are given by 

T
2 H 

          (30) 

2T
12


(31) 

2T
1121(  p 
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T 3
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6
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
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

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 6/3 T  ABCR 
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


 1  as0
2
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The Higgs field () is given by equation (18) as 

M
6

T L
6










        (38) 

where L and M are constants. 

 

5. Energy Conditions 

 

Following Kolassis et al. (1988), Chatterjee and Banerjee (2004), we discuss briefly 

weak, dominant and strong energy conditions in the context of inflationary scenario 

with the bulk viscosity for the model (29). We have 

k
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H3pT k,
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2
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2

00 
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3322 TT 
         (39) 

where V() = k (constant). 

In the locally Minkowskian frame, the roots of matrix equations 
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give the Eigen values r of our energy-momentum tensor as 
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2
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The energy conditions for our model are 

5.1 Weak Energy Conditions 

0rr0k  
2

  toleads0r 10

2

0 





leads to 

 )1(  p as  H3 22   (41) 

5.2 Dominant Energy Conditions 
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2

0 rrr0,k 
2
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




 leads to 

2kH3 p 2  (42) 

5.3 Strong Energy Conditions 

2kH323p  toleads0rr 22
i0   

    (43) 

If we group (42) and (43) then we have 

2kH3323p 22   
 

The reality condition  + p > 0 is violated for inflationary universe due to the 

presence of scalar field. 
 

6. Conclusion 

The spatial volume increases with time representing inflationary scenario. The 

matter density is initially large but decreases with time. The bulk viscosity prevents the 

matter density to vanish. Initially the model starts with a big-bang at T = 0 and the 

expansion decreases with time.  
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Later on, it represents accelerating universe which matches with the result as 

obtained by Riess et al. (1998) and Perlmutter et al. (1999). The decelerating 

expansion at the initial epoch provides obvious provision for the formation of large 

structure of universe. The formation of structures in the universe is better supported 

by decelerating expansion. Also the late time acceleration is in agreement with the 

observations of 16 type Ia supernovae made by Hubble Space Telescope (HST) (Riess 

et al. 2004). Since 





0 in general, therefore anisotropy is maintained. However, the 

model isotropizes at late time. The Higgs field evolves slowly but the universe 

expands. The presence of bulk viscosity tends to increase the inflationary phase. The 

energy conditions as given by Kolassis et al. (1988), Chatterjee and Banerjee (2004) 

are discussed. The model (29) has Point Type singularity at T = 0 (MacCallum 

(1971)). We also observed that the stiff fluid case ( = 2), dust distribution ( = 1) and 

radiation dominated model ( = 4/3) are having similar results. 
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