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Abstract 
 
 

In the present paper, an analytical formula was established for the inverse problem of 
the atmospheric refraction. Numerical applications are also given with computational 
checks, which indicate the extreme accuracy of the formula. An application of the 
formula to study the efficiency of astronomical refractions formulae was also 
illustrated. 
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1. Introduction 

 

Atmospheric refraction was mentioned as early as the first century A.D. by 

Cleomedes independently by Ptolemy (discussed in his Optics), ca. A.D.150. The 

refraction is the bending of light while passing from transparent homogenous medium 

to another transparent homogenous medium whose density is different from the first 

medium. The starlight moves in straight line until it meets the outer surface of the 

atmosphere, then it suffers through its passage in the Earth's atmosphere series of 

refractions called astronomical refraction. As a result of refraction, the observed altitude of 

a celestial object is greater than its geometric altitude.  
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The amount of refraction depends on the altitude of the object and on 

atmospheric conditions (Timofeyev and Vasilʹev 2008).  The numerical formula for the 

mean refraction R for the standard conditions which are taken in practice to be: barometric 

pressure =760 mm Hg. and temperature = 10 .,oC    is given by one of the following 

formulae 

 

358.29 4  tan 0.066 8  tan .R      ,                                          (1) 

358.27 6  tan 0.082 4  tan ,R                                                (2) 

 

where  is the observed (apparent) zenith distance. The first formula is given by Smart 

(1980) while, the second one has been derived by Meeus (1999). Clearly, both formulae 

(1) and (2) are not valid when the observed zenith distance equal to90o . In addition, 

the formulae are insufficient when the zenith distance exceeds 75o (Corbard et al. 2014). 

Atmospheric refraction plays important roles in many applications of spherical 

astronomy, of these as for example, in topo centric phenomena, such as the time of 

rising and setting of the Sun and Moon, and in the prediction of local circumstances of 

eclipses. Also for observational reductions, the effect of refraction on the equatorial 

coordinates of a star must be included. On the other hand, the inverse problem of the 

atmospheric refraction that is to determine the true zenith distance z (or the apparent 

zenith distance )z R    knowing the atmospheric refraction R is also important in 

many applications of spherical astronomy (Taff 1981,Meeus 1999) The present paper 

is devoted to establish analytical formula for inverse problem of the atmospheric 

refraction. Numerical applications are also given with computational checks which 

indicating the extreme accuracy of the formula. An application of the formula to study 

the efficiency of astronomical refractions formulae was also illustrated. 
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2. Analytical Solution of the Inverse Problem 

 

The inverse problem of the atmospheric refraction is to find z knowing R. In 

this respect, we established the following theorem.  

 

Theorem 1:  If the value of the atmospheric refraction R (arc seconds)is known, then 

the true zenith distance z is given as: 

 

2 4 48.54368932 
arctan ,
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where 

 

22 (0.222222 0.0003725356 ),s C R                                (4) 

 

C is the continued fraction: 

1

2
1

3
2

3

n
C

n
d

n
d

d








,                                                  (5) 

,1n1 

(3 1)(3 - 4)
         odd  1,

9 (2 -3)(2 -1)

(3 2)(3 -5)
.         even  2,.

9 (2 -3)(2 -1)

i

i i
i

i i
n

i i
i

i i





 



 

  


1,j  1d j       (6) 

1
(1 ) (1 0.001676412 ).

2
b R                                                     (7) 

Proof: 

Equation (2) can be written as: 

3tan tan ,p q                                                       (8) 



24                                  International Journal of Physics and Astronomy, Vol. 3(1), June 2015 
 

 
where 

58.276
707.233097

0.0824
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,                                               (9) 

12.13592233 
0.0824
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.                                     (10) 

Let 

tan  
3

p
y  ,                                                     (11) 

then 

3 3 2 ,y y b                                                       (12) 

where 

3/2
1

0.001676412 
2 3

q
b p R



 
   

 
.                           (13) 

Let  

1y     ,                                                        (14) 

then y could be represented as: 

2 1/3 2 1/3( 1) ( 1) .y b b b b                                           (15) 

Since, 1b   then we can write 

cosb x ,                                                            (16) 

where   any integer. Using Equation (16) into Equation (15), we get: 

2cos
3

y x ,                                                     (17) 

consequently, Equation (12) yields  

34cos 3cos cos
3 3

x x x   ,                                    (18) 

which is an appropriate identity for the cosine function for any integer .  Equation (17) 

could be written as: 
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Since  at our disposal let us take 2 , then Equation (19) reduces to 

2
2 (1- ) sin / 3

2
9 sin

b x
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Using the continued expansion of the ratio in the brackets (Wall 1948), Equations (5) 

and (6) follow directly. Equation (7) obtained by using the value of b (Equation (13)). 

Having obtained the solution (20), the smallest positive root  of Equation (12) 

is obtained from the solution of the equation  

2 3

1 1 0q       ;    1
3

p
y  , 

and hence the true zenith distance from z R    as given from Equation (3). 

 

3. Continued Fraction Evaluation 

 

In fact, continued fraction expansions are generally far more efficient tools for 

evaluating the classical functions than the more familiar infinite power series. Their 

convergence is typically faster and more extensive than the series.  

 

3.1 Top- Down Continued Fraction Evaluation 

 

There are several methods available for the evaluation of continued fraction. 

Traditionally, either the fraction was computed from the bottom up, or the numerator 

and denominator of the nth convergent were accumulated separately with three-term 

recurrence formulae. The drawback of the first method, obviously, has to decide far 

down the fraction to being in order to ensure convergence. The drawback to the second 
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method is that the numerator and denominator rapidly overflow numerically even 

though their ratio tends to a well-defined limit. Thus, it is clear that an algorithm that 

works from top down while avoiding numerical difficulties would be ideal from a 

programming standpoint. Gautschi (1967) proposed very concise algorithm to evaluate 

continued fraction from the top down and may be summarized as follows. If the 

continued fraction is written as in Equation (5), then initialize the following parameters 
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and iterate (k=1, 2,…) according to: 
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In the limit, the c sequence converges to the value of the continued fraction. 

4. Applications 

 

4.1 Numerical Applications 

 

Consider random values of the atmospheric refraction [1,180]R  seconds of 

arc, the  applications of Theorem 1  and  Gautschi's  algorithm  of  Section 3 yields the 

true zenith distances as listed in Table 1.The computed values could be checked by the 

condition that  



Sharaf, Saad & Motelp                                                                                                           27 
  

 

 

 

3 3 2CH y y b    ,                                                      (21) 

 

such that, the smaller the value of CH the more accurate solution will be. 

 

Table 1: The Inverse Problem of the Atmospheric Refraction 

 

R” zo CH R” zo CH 

39.9755 34.4778 -8.88178e-16 47.2943 39.1006 -2.7756e-16 
84.7417 55.5882 1.4988e-15 63.7008 47.6126 -8.32667e-16 
154.556 69.576 1.9984e-15 130.447 66.1175 -3.10862e-15 
53.6412 42.6778 2.77555e-17 4.27549 4.19727 6.59195e-17 
153.961 69.5018 2.33147e-15 119.489 64.1702 -1.11022e-16 
9.43967 9.20393 6.8695e-16 118.403 63.9615 -1.22125e-15 
62.5668 47.0977 1.58207e-15 42.0237 35.8276 1.11022e-16 
126.552 65.45569 -1.66533e-16 16.7368 16.0305 4.23273e-16 
143.874 68.1646 -3.88578e-16 177.756 72.1276 -1.11022e-16 
86.5408 56.1513 1.11022e-15 83.0376 55.0396 4.44089e-16 
60.6897 46..2232 -2.13718e-15 121.277 64.5074 5.55112e-16 
22.3535 20.9960 1.11022e-15 86.9758 56.2851 1.38778e-15 
150.218 69.0236 7.77156e-16 102.129 60.4269 1.11022e-16 
52.1028 41.8457 2.77556e-16 87.864 56.5554 7.21645e-16 
62.8364 47.2210 -1.05471e-15 30.826 27.8952 -6.93889e-17 

 

 

 

4.2 Efficiency Study 

 

Due to the extreme accuracy of the expression (3), we can use it to study the 

efficiency of the many astronomical refraction formulae (for example the formulae 

mentioned in Bennett's paper (Bennett 1982)) as follows: 

 

1-Select one of the formulae, ( )(say)R F  . 

2- Compute the values of jR for some given values of )say(N,,2,1j;j  . 
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3- Using these values of R's to compute j  from Equation (3) as

; 1, 2,..., .j j jz R j N      

4- Compute the absolute relative errors ; 1, 2,...,
j j

j

j

j N
 




  


.   

Now let us renormalize the concept of acceptable “astronomical refraction formula” 

We may define an acceptable set for astronomical formulae as: 
 

:
N

j

j

W N Tol
 

      
 

 ,                                      (22) 

 

Where Tol is small number. In writing Equation (22), we do not mean to 

establish this particular definition of an acceptable set, as it is only intended to give the 

users some degree of concreteness to the general idea of acceptable formulae set. In 

concluding the present paper, an analytical formula was established for the inverse 

problem of the atmospheric refraction. Numerical applications are also given with 

computational checks which indicating the extreme accuracy of the formula. An 

application of the formula to study the efficiency of astronomical refractions formulae 

was also illustrated. 
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